117 research outputs found

    An aged bone marrow niche restrains rejuvenated hematopoietic stem cells

    Get PDF
    Aging-associated leukemia and aging-associated immune remodeling are in part caused by aging of hematopoietic stem cells (HSCs). An increase in the activity of the small RhoGTPase cell division control protein 42 (Cdc42) within HSCs causes aging of HSCs. Old HSCs, treated ex vivo with a specific inhibitor of Cdc42 activity termed CASIN, stay rejuvenated upon transplantation into young recipients. We determined in this study the influence of an aged niche on the function of ex vivo rejuvenated old HSCs, as the relative contribution of HSCs intrinsic mechanisms vs extrinsic mechanisms (niche) for aging of HSCs still remain unknown. Our results show that an aged niche restrains the function of ex vivo rejuvenated HSCs, which is at least in part linked to a low level of the cytokine osteopontin found in aged niches. The data imply that sustainable rejuvenation of the function of aged HSCs in vivo will need to address the influence of an aged niche on rejuvenated HSCs

    Targeted methods for epigenetic age predictions in mice

    Get PDF
    Age-associated DNA methylation reflects aspect of biological aging-therefore epigenetic clocks for mice can elucidate how the aging process in this model organism is affected by specific treatments or genetic background. Initially, age-predictors for mice were trained for genome-wide DNA methylation profiles and we have recently described a targeted assay based on pyrosequencing of DNA methylation at only three age-associated genomic regions. Here, we established alternative approaches using droplet digital PCR (ddPCR) and barcoded bisulfite amplicon sequencing (BBA-seq). At individual CG dinucleotides (CpGs) the correlation of DNA methylation with chronological age was slightly higher for pyrosequencing and ddPCR as compared to BBA-seq. On the other hand, BBA-seq revealed that neighboring CpGs tend to be stochastically modified at murine age-associated regions. Furthermore, the binary sequel of methylated and non-methylated CpGs in individual reads can be used for single-read predictions, which may reflect heterogeneity in epigenetic aging. In comparison to C57BL/6 mice the single-read age-predictions using BBA-seq were also accelerated in the shorter-lived DBA/2 mice, and in C57BL/6 mice with a lifespan quantitative trait locus of DBA/2 mice. Taken together, we describe alternative targeted methods for epigenetic age predictions that provide new perspectives for aging-intervention studies in mice

    Aged Murine Hematopoietic Stem Cells Drive Aging-Associate Immune Remodeling

    Get PDF
    Aging-associated remodeling of the immune system impairs its functional integrity and contributes to increased morbidity and mortality in the elderly. Aging of hematopoietic stem cells (HSCs), from which all cells of the adaptive immune system ultimately originate, might play a crucial role in the remodeling of the aged immune system. We recently reported that aging of HSCs is, in part, driven by elevated activity of the small RhoGTPase Cdc42 and that aged HSCs can be rejuvenated in vitro by inhibition of the elevated Cdc42 activity in aged HSCs with the pharmacological compound CASIN. To study the quality of immune systems stemming selectively from young or aged HSCs, we established a HSC transplantation model in T- and B-cell-deficient young RAG1−/− hosts. We report that both phenotypic and functional changes in the immune system on aging are primarily a consequence of changes in the function of HSCs on aging and, to a large extent, independent of the thymus, as young and aged HSCs reconstituted distinct T- and B-cell subsets in RAG1−/− hosts that mirrored young and aged immune systems. Importantly, aged HSCs treated with CASIN reestablished an immune system similar to that of young animals, and thus capable of mounting a strong immune response to vaccination. Our studies further imply that epigenetic signatures already imprinted in aged HSCs determine the transcriptional profile and function of HSC-derived T and B cells

    Attrition of X Chromosome Inactivation in Aged Hematopoietic Stem Cells

    Get PDF
    During X chromosome inactivation (XCI), the inactive X chromosome (Xi) is recruited to the nuclear lamina at the nuclear periphery. Beside X chromosome reactivation resulting in a highly penetrant aging-like hematopoietic malignancy, little is known about XCI in aged hematopoietic stem cells (HSCs). Here, we demonstrate that LaminA/C defines a distinct repressive nuclear compartment for XCI in young HSCs, and its reduction in aged HSCs correlates with an impairment in the overall control of XCI. Integrated omics analyses reveal higher variation in gene expression, global hypomethylation, and significantly increased chromatin accessibility on the X chromosome (Chr X) in aged HSCs. In summary, our data support the role of LaminA/C in the establishment of a special repressive compartment for XCI in HSCs, which is impaired upon aging

    RHOA GTPase Controls YAP-Mediated EREG Signaling in Small Intestinal Stem Cell Maintenance

    Get PDF
    RHOA, a founding member of the Rho GTPase family, is critical for actomyosin dynamics, polarity, and morphogenesis in response to developmental cues, mechanical stress, and inflammation. In murine small intestinal epithelium, inducible RHOA deletion causes a loss of epithelial polarity, with disrupted villi and crypt organization. In the intestinal crypts, RHOA deficiency results in reduced cell proliferation, increased apoptosis, and a loss of intestinal stem cells (ISCs) that mimic effects of radiation damage. Mechanistically, RHOA loss reduces YAP signaling of the Hippo pathway and affects YAP effector epiregulin (EREG) expression in the crypts. Expression of an active YAP (S112A) mutant rescues ISC marker expression, ISC regeneration, and ISC-associated Wnt signaling, but not defective epithelial polarity, in RhoA knockout mice, implicating YAP in RHOA-regulated ISC function. EREG treatment or active β-catenin Catnblox(ex3) mutant expression rescues the RhoA KO ISC phenotypes. Thus, RHOA controls YAP-EREG signaling to regulate intestinal homeostasis and ISC regeneration

    bcTol: a highly water-soluble biradical for efficient dynamic nuclear polarization of biomolecules

    Get PDF
    Post-print (lokagerð höfundar)Dynamic nuclear polarization (DNP) is an efficient method to overcome the inherent low sensitivity of magic-angle spinning (MAS) solid-state NMR. We report a new polarizing agent (bcTol), designed for biological applications, that yielded an enhancement value of 244 in a microcrystalline SH3 domain sample at 110 K.This work was financially supported by the Icelandic Research Fund (141062051), the Deutsche Forschungsgemeinschaft (SFB 1078, 740 and 765) and by a doctoral fellowship to A. P. J. from the University of Icelandic Research Fund. We thank A. Diehl, K. Rehbein, N. Erdmann and D. Michl for the preparation of microcrystalline SH3 and channelrhodopsin samples, Dr S. Jonsdottir for assistance in collecting analytical data for structural characterization of the radicals, as well as P. Hegemann and K. Stehfest for helpful discussions concerning expression and purification of channelrhodopsin.Peer reviewe

    Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

    Get PDF
    The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the \u27plant mosaic disease\u27 eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus–host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of \u27smart\u27 functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied, e.g., for monitoring blood sugar concentrations, might profit particularly from the presence of TMV rods: Their surfaces were recently shown to stabilize enzymatic activities upon repeated consecutive uses and over several weeks. This review gives the reader a ride through strikingly diverse achievements obtained with TMV-based particles, compares them to the progress with related viruses, and focuses on latest results revealing special advantages for enzyme-based biosensing formats, which might be of high interest for diagnostics employing \u27systems-on-a-chip\u27

    Stem Cells and Aging:What's Next?

    Get PDF
    We asked 12 leaders in the stem cell and aging fields to share their personal perspectives on the future of the field and the unanswered questions that drive them to work in this exciting area

    Inhibition of Cdc42 activity extends lifespan and decreases circulating inflammatory cytokines in aged female C57BL/6 mice

    Full text link
    Cdc42 is a small RhoGTPase regulating multiple functions in eukaryotic cells. The activity of Cdc42 is significantly elevated in several tissues of aged mice, while the Cdc42 gain-of-activity mouse model presents with a premature aging-like phenotype and with decreased lifespan. These data suggest a causal connection between elevated activity of Cdc42, aging, and reduced lifespan. Here, we demonstrate that systemic treatment of aged (75-week-old) female C57BL/6 mice with a Cdc42 activity-specific inhibitor (CASIN) for 4 consecutive days significantly extends average and maximum lifespan. Moreover, aged CASIN-treated animals displayed a youthful level of the aging-associated cytokines IL-1β, IL-1α, and INFγ in serum and a significantly younger epigenetic clock as based on DNA methylation levels in blood cells. Overall, our data show that systemic administration of CASIN to reduce Cdc42 activity in aged mice extends murine lifespan

    Stem Cell-Specific Mechanisms Ensure Genomic Fidelity within HSCs and upon Aging of HSCs

    Get PDF
    SummaryWhether aged hematopoietic stem and progenitor cells (HSPCs) have impaired DNA damage repair is controversial. Using a combination of DNA mutation indicator assays, we observe a 2- to 3-fold increase in the number of DNA mutations in the hematopoietic system upon aging. Young and aged hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) do not show an increase in mutation upon irradiation-induced DNA damage repair, and young and aged HSPCs respond very similarly to DNA damage with respect to cell-cycle checkpoint activation and apoptosis. Both young and aged HSPCs show impaired activation of the DNA-damage-induced G1-S checkpoint. Induction of chronic DNA double-strand breaks by zinc-finger nucleases suggests that HSPCs undergo apoptosis rather than faulty repair. These data reveal a protective mechanism in both the young and aged hematopoietic system against accumulation of mutations in response to DNA damage
    corecore